Skip to main content

Embeddings - /embeddings

See supported Embedding Providers & Models here

Quick start

Here's how to route between GPT-J embedding (sagemaker endpoint), Amazon Titan embedding (Bedrock) and Azure OpenAI embedding on the proxy server:

  1. Set models in your config.yaml
model_list:
- model_name: sagemaker-embeddings
litellm_params:
model: "sagemaker/berri-benchmarking-gpt-j-6b-fp16"
- model_name: amazon-embeddings
litellm_params:
model: "bedrock/amazon.titan-embed-text-v1"
- model_name: azure-embeddings
litellm_params:
model: "azure/azure-embedding-model"
api_base: "os.environ/AZURE_API_BASE" # os.getenv("AZURE_API_BASE")
api_key: "os.environ/AZURE_API_KEY" # os.getenv("AZURE_API_KEY")
api_version: "2023-07-01-preview"

general_settings:
master_key: sk-1234 # [OPTIONAL] if set all calls to proxy will require either this key or a valid generated token
  1. Start the proxy
$ litellm --config /path/to/config.yaml
  1. Test the embedding call
curl --location 'http://0.0.0.0:4000/v1/embeddings' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data '{
"input": "The food was delicious and the waiter..",
"model": "sagemaker-embeddings",
}'