Skip to main content

LiteLLM - Getting Started

https://github.com/BerriAI/litellm

Call 100+ LLMs using the OpenAI Input/Output Format​

  • Translate inputs to provider's completion, embedding, and image_generation endpoints
  • Consistent output, text responses will always be available at ['choices'][0]['message']['content']
  • Retry/fallback logic across multiple deployments (e.g. Azure/OpenAI) - Router
  • Track spend & set budgets per project LiteLLM Proxy Server

How to use LiteLLM​

You can use litellm through either:

  1. LiteLLM Proxy Server - Server (LLM Gateway) to call 100+ LLMs, load balance, cost tracking across projects
  2. LiteLLM python SDK - Python Client to call 100+ LLMs, load balance, cost tracking

When to use LiteLLM Proxy Server (LLM Gateway)​

tip

Use LiteLLM Proxy Server if you want a central service (LLM Gateway) to access multiple LLMs

Typically used by Gen AI Enablement / ML PLatform Teams

  • LiteLLM Proxy gives you a unified interface to access multiple LLMs (100+ LLMs)
  • Track LLM Usage and setup guardrails
  • Customize Logging, Guardrails, Caching per project

When to use LiteLLM Python SDK​

tip

Use LiteLLM Python SDK if you want to use LiteLLM in your python code

Typically used by developers building llm projects

  • LiteLLM SDK gives you a unified interface to access multiple LLMs (100+ LLMs)
  • Retry/fallback logic across multiple deployments (e.g. Azure/OpenAI) - Router

LiteLLM Python SDK​

Basic usage​

Open In Colab
pip install litellm
from litellm import completion
import os

## set ENV variables
os.environ["OPENAI_API_KEY"] = "your-api-key"

response = completion(
model="gpt-3.5-turbo",
messages=[{ "content": "Hello, how are you?","role": "user"}]
)

Streaming​

Set stream=True in the completion args.

from litellm import completion
import os

## set ENV variables
os.environ["OPENAI_API_KEY"] = "your-api-key"

response = completion(
model="gpt-3.5-turbo",
messages=[{ "content": "Hello, how are you?","role": "user"}],
stream=True,
)

Exception handling​

LiteLLM maps exceptions across all supported providers to the OpenAI exceptions. All our exceptions inherit from OpenAI's exception types, so any error-handling you have for that, should work out of the box with LiteLLM.

from openai.error import OpenAIError
from litellm import completion

os.environ["ANTHROPIC_API_KEY"] = "bad-key"
try:
# some code
completion(model="claude-instant-1", messages=[{"role": "user", "content": "Hey, how's it going?"}])
except OpenAIError as e:
print(e)

Logging Observability - Log LLM Input/Output (Docs)​

LiteLLM exposes pre defined callbacks to send data to MLflow, Lunary, Langfuse, Helicone, Promptlayer, Traceloop, Slack

from litellm import completion

## set env variables for logging tools (API key set up is not required when using MLflow)
os.environ["LUNARY_PUBLIC_KEY"] = "your-lunary-public-key" # get your key at https://app.lunary.ai/settings
os.environ["HELICONE_API_KEY"] = "your-helicone-key"
os.environ["LANGFUSE_PUBLIC_KEY"] = ""
os.environ["LANGFUSE_SECRET_KEY"] = ""

os.environ["OPENAI_API_KEY"]

# set callbacks
litellm.success_callback = ["lunary", "mlflow", "langfuse", "helicone"] # log input/output to lunary, mlflow, langfuse, helicone

#openai call
response = completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hi 👋 - i'm openai"}])

Track Costs, Usage, Latency for streaming​

Use a callback function for this - more info on custom callbacks: https://docs.litellm.ai/docs/observability/custom_callback

import litellm

# track_cost_callback
def track_cost_callback(
kwargs, # kwargs to completion
completion_response, # response from completion
start_time, end_time # start/end time
):
try:
response_cost = kwargs.get("response_cost", 0)
print("streaming response_cost", response_cost)
except:
pass
# set callback
litellm.success_callback = [track_cost_callback] # set custom callback function

# litellm.completion() call
response = completion(
model="gpt-3.5-turbo",
messages=[
{
"role": "user",
"content": "Hi 👋 - i'm openai"
}
],
stream=True
)

LiteLLM Proxy Server (LLM Gateway)​

Track spend across multiple projects/people

ui_3

The proxy provides:

  1. Hooks for auth
  2. Hooks for logging
  3. Cost tracking
  4. Rate Limiting

📖 Proxy Endpoints - Swagger Docs​

Go here for a complete tutorial with keys + rate limits - here

Quick Start Proxy - CLI​

pip install 'litellm[proxy]'

Step 1: Start litellm proxy​

$ litellm --model huggingface/bigcode/starcoder

#INFO: Proxy running on http://0.0.0.0:4000

Step 2: Make ChatCompletions Request to Proxy​

import openai # openai v1.0.0+
client = openai.OpenAI(api_key="anything",base_url="http://0.0.0.0:4000") # set proxy to base_url
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
])

print(response)

More details​