Skip to main content

Virtual Keys

Track Spend, and control model access via virtual keys for the proxy

Setup

Requirements:

  • Need a postgres database (e.g. Supabase, Neon, etc)
  • Set DATABASE_URL=postgresql://<user>:<password>@<host>:<port>/<dbname> in your env
  • Set a master key, this is your Proxy Admin key - you can use this to create other keys (🚨 must start with sk-).
    • Set on config.yaml set your master key under general_settings:master_key, example below
    • Set env variable set LITELLM_MASTER_KEY

(the proxy Dockerfile checks if the DATABASE_URL is set and then intializes the DB connection)

export DATABASE_URL=postgresql://<user>:<password>@<host>:<port>/<dbname>

You can then generate keys by hitting the /key/generate endpoint.

See code

Quick Start - Generate a Key

Step 1: Save postgres db url

model_list:
- model_name: gpt-4
litellm_params:
model: ollama/llama2
- model_name: gpt-3.5-turbo
litellm_params:
model: ollama/llama2

general_settings:
master_key: sk-1234
database_url: "postgresql://<user>:<password>@<host>:<port>/<dbname>" # 👈 KEY CHANGE

Step 2: Start litellm

litellm --config /path/to/config.yaml

Step 3: Generate keys

curl 'http://0.0.0.0:4000/key/generate' \
--header 'Authorization: Bearer <your-master-key>' \
--header 'Content-Type: application/json' \
--data-raw '{"models": ["gpt-3.5-turbo", "gpt-4"], "metadata": {"user": "ishaan@berri.ai"}}'

Spend Tracking

Get spend per:

How is it calculated?

The cost per model is stored here and calculated by the completion_cost function.

How is it tracking?

Spend is automatically tracked for the key in the "LiteLLM_VerificationTokenTable". If the key has an attached 'user_id' or 'team_id', the spend for that user is tracked in the "LiteLLM_UserTable", and team in the "LiteLLM_TeamTable".

You can get spend for a key by using the /key/info endpoint.

curl 'http://0.0.0.0:4000/key/info?key=<user-key>' \
-X GET \
-H 'Authorization: Bearer <your-master-key>'

This is automatically updated (in USD) when calls are made to /completions, /chat/completions, /embeddings using litellm's completion_cost() function. See Code.

Sample response

{
"key": "sk-tXL0wt5-lOOVK9sfY2UacA",
"info": {
"token": "sk-tXL0wt5-lOOVK9sfY2UacA",
"spend": 0.0001065, # 👈 SPEND
"expires": "2023-11-24T23:19:11.131000Z",
"models": [
"gpt-3.5-turbo",
"gpt-4",
"claude-2"
],
"aliases": {
"mistral-7b": "gpt-3.5-turbo"
},
"config": {}
}
}

Model Access

Restrict models by Virtual Key

Set allowed models for a key using the models param

curl 'http://0.0.0.0:4000/key/generate' \
--header 'Authorization: Bearer <your-master-key>' \
--header 'Content-Type: application/json' \
--data-raw '{"models": ["gpt-3.5-turbo", "gpt-4"]}'
info

This key can only make requests to models that are gpt-3.5-turbo or gpt-4

Verify this is set correctly by

curl -i http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "gpt-4",
"messages": [
{"role": "user", "content": "Hello"}
]
}'

Restrict models by team_id

litellm-dev can only access azure-gpt-3.5

1. Create a team via /team/new

curl --location 'http://localhost:4000/team/new' \
--header 'Authorization: Bearer <your-master-key>' \
--header 'Content-Type: application/json' \
--data-raw '{
"team_alias": "litellm-dev",
"models": ["azure-gpt-3.5"]
}'

# returns {...,"team_id": "my-unique-id"}

2. Create a key for team

curl --location 'http://localhost:4000/key/generate' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data-raw '{"team_id": "my-unique-id"}'

3. Test it

curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer sk-qo992IjKOC2CHKZGRoJIGA' \
--data '{
"model": "BEDROCK_GROUP",
"messages": [
{
"role": "user",
"content": "hi"
}
]
}'
{"error":{"message":"Invalid model for team litellm-dev: BEDROCK_GROUP.  Valid models for team are: ['azure-gpt-3.5']\n\n\nTraceback (most recent call last):\n  File \"/Users/ishaanjaffer/Github/litellm/litellm/proxy/proxy_server.py\", line 2298, in chat_completion\n    _is_valid_team_configs(\n  File \"/Users/ishaanjaffer/Github/litellm/litellm/proxy/utils.py\", line 1296, in _is_valid_team_configs\n    raise Exception(\nException: Invalid model for team litellm-dev: BEDROCK_GROUP.  Valid models for team are: ['azure-gpt-3.5']\n\n","type":"None","param":"None","code":500}}%            

Grant Access to new model (Access Groups)

Use model access groups to give users access to select models, and add new ones to it over time (e.g. mistral, llama-2, etc.)

Step 1. Assign model, access group in config.yaml

model_list:
- model_name: gpt-4
litellm_params:
model: openai/fake
api_key: fake-key
api_base: https://exampleopenaiendpoint-production.up.railway.app/
model_info:
access_groups: ["beta-models"] # 👈 Model Access Group
- model_name: fireworks-llama-v3-70b-instruct
litellm_params:
model: fireworks_ai/accounts/fireworks/models/llama-v3-70b-instruct
api_key: "os.environ/FIREWORKS"
model_info:
access_groups: ["beta-models"] # 👈 Model Access Group

Create key with access group

curl --location 'http://localhost:4000/key/generate' \
-H 'Authorization: Bearer <your-master-key>' \
-H 'Content-Type: application/json' \
-d '{"models": ["beta-models"], # 👈 Model Access Group
"max_budget": 0,}'

Test Key

curl -i http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-<key-from-previous-step>" \
-d '{
"model": "gpt-4",
"messages": [
{"role": "user", "content": "Hello"}
]
}'

Model Aliases

If a user is expected to use a given model (i.e. gpt3-5), and you want to:

  • try to upgrade the request (i.e. GPT4)
  • or downgrade it (i.e. Mistral)
  • OR rotate the API KEY (i.e. open AI)
  • OR access the same model through different end points (i.e. openAI vs openrouter vs Azure)

Here's how you can do that:

Step 1: Create a model group in config.yaml (save model name, api keys, etc.)

model_list:
- model_name: my-free-tier
litellm_params:
model: huggingface/HuggingFaceH4/zephyr-7b-beta
api_base: http://0.0.0.0:8001
- model_name: my-free-tier
litellm_params:
model: huggingface/HuggingFaceH4/zephyr-7b-beta
api_base: http://0.0.0.0:8002
- model_name: my-free-tier
litellm_params:
model: huggingface/HuggingFaceH4/zephyr-7b-beta
api_base: http://0.0.0.0:8003
- model_name: my-paid-tier
litellm_params:
model: gpt-4
api_key: my-api-key

Step 2: Generate a user key - enabling them access to specific models, custom model aliases, etc.

curl -X POST "https://0.0.0.0:4000/key/generate" \
-H "Authorization: Bearer <your-master-key>" \
-H "Content-Type: application/json" \
-d '{
"models": ["my-free-tier"],
"aliases": {"gpt-3.5-turbo": "my-free-tier"},
"duration": "30min"
}'
  • How to upgrade / downgrade request? Change the alias mapping
  • How are routing between diff keys/api bases done? litellm handles this by shuffling between different models in the model list with the same model_name. See Code

Advanced

Pass LiteLLM Key in custom header

Use this to make LiteLLM proxy look for the virtual key in a custom header instead of the default "Authorization" header

Step 1 Define litellm_key_header_name name on litellm config.yaml

model_list:
- model_name: fake-openai-endpoint
litellm_params:
model: openai/fake
api_key: fake-key
api_base: https://exampleopenaiendpoint-production.up.railway.app/

general_settings:
master_key: sk-1234
litellm_key_header_name: "X-Litellm-Key" # 👈 Key Change

Step 2 Test it

In this request, litellm will use the Virtual key in the X-Litellm-Key header

curl http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "X-Litellm-Key: Bearer sk-1234" \
-H "Authorization: Bearer bad-key" \
-d '{
"model": "fake-openai-endpoint",
"messages": [
{"role": "user", "content": "Hello, Claude gm!"}
]
}'

Expected Response

Expect to see a successfull response from the litellm proxy since the key passed in X-Litellm-Key is valid

{"id":"chatcmpl-f9b2b79a7c30477ab93cd0e717d1773e","choices":[{"finish_reason":"stop","index":0,"message":{"content":"\n\nHello there, how may I assist you today?","role":"assistant","tool_calls":null,"function_call":null}}],"created":1677652288,"model":"gpt-3.5-turbo-0125","object":"chat.completion","system_fingerprint":"fp_44709d6fcb","usage":{"completion_tokens":12,"prompt_tokens":9,"total_tokens":21}

Enable/Disable Virtual Keys

Disable Keys

curl -L -X POST 'http://0.0.0.0:4000/key/block' \
-H 'Authorization: Bearer LITELLM_MASTER_KEY' \
-H 'Content-Type: application/json' \
-d '{"key": "KEY-TO-BLOCK"}'

Expected Response:

{
...
"blocked": true
}

Enable Keys

curl -L -X POST 'http://0.0.0.0:4000/key/unblock' \
-H 'Authorization: Bearer LITELLM_MASTER_KEY' \
-H 'Content-Type: application/json' \
-d '{"key": "KEY-TO-UNBLOCK"}'
{
...
"blocked": false
}

Custom Auth

You can now override the default api key auth.

Here's how:

1. Create a custom auth file.

Make sure the response type follows the UserAPIKeyAuth pydantic object. This is used by for logging usage specific to that user key.

from litellm.proxy._types import UserAPIKeyAuth

async def user_api_key_auth(request: Request, api_key: str) -> UserAPIKeyAuth:
try:
modified_master_key = "sk-my-master-key"
if api_key == modified_master_key:
return UserAPIKeyAuth(api_key=api_key)
raise Exception
except:
raise Exception

2. Pass the filepath (relative to the config.yaml)

Pass the filepath to the config.yaml

e.g. if they're both in the same dir - ./config.yaml and ./custom_auth.py, this is what it looks like:

model_list: 
- model_name: "openai-model"
litellm_params:
model: "gpt-3.5-turbo"

litellm_settings:
drop_params: True
set_verbose: True

general_settings:
custom_auth: custom_auth.user_api_key_auth

Implementation Code

3. Start the proxy

$ litellm --config /path/to/config.yaml 

Custom /key/generate

If you need to add custom logic before generating a Proxy API Key (Example Validating team_id)

1. Write a custom custom_generate_key_fn

The input to the custom_generate_key_fn function is a single parameter: data (Type: GenerateKeyRequest)

The output of your custom_generate_key_fn should be a dictionary with the following structure

{
"decision": False,
"message": "This violates LiteLLM Proxy Rules. No team id provided.",
}

  • decision (Type: bool): A boolean value indicating whether the key generation is allowed (True) or not (False).

  • message (Type: str, Optional): An optional message providing additional information about the decision. This field is included when the decision is False.

async def custom_generate_key_fn(data: GenerateKeyRequest)-> dict:
"""
Asynchronous function for generating a key based on the input data.

Args:
data (GenerateKeyRequest): The input data for key generation.

Returns:
dict: A dictionary containing the decision and an optional message.
{
"decision": False,
"message": "This violates LiteLLM Proxy Rules. No team id provided.",
}
"""

# decide if a key should be generated or not
print("using custom auth function!")
data_json = data.json() # type: ignore

# Unpacking variables
team_id = data_json.get("team_id")
duration = data_json.get("duration")
models = data_json.get("models")
aliases = data_json.get("aliases")
config = data_json.get("config")
spend = data_json.get("spend")
user_id = data_json.get("user_id")
max_parallel_requests = data_json.get("max_parallel_requests")
metadata = data_json.get("metadata")
tpm_limit = data_json.get("tpm_limit")
rpm_limit = data_json.get("rpm_limit")

if team_id is not None and team_id == "litellm-core-infra@gmail.com":
# only team_id="litellm-core-infra@gmail.com" can make keys
return {
"decision": True,
}
else:
print("Failed custom auth")
return {
"decision": False,
"message": "This violates LiteLLM Proxy Rules. No team id provided.",
}

2. Pass the filepath (relative to the config.yaml)

Pass the filepath to the config.yaml

e.g. if they're both in the same dir - ./config.yaml and ./custom_auth.py, this is what it looks like:

model_list: 
- model_name: "openai-model"
litellm_params:
model: "gpt-3.5-turbo"

litellm_settings:
drop_params: True
set_verbose: True

general_settings:
custom_key_generate: custom_auth.custom_generate_key_fn

Upperbound /key/generate params

Use this, if you need to set default upperbounds for max_budget, budget_duration or any key/generate param per key.

Set litellm_settings:upperbound_key_generate_params:

litellm_settings:
upperbound_key_generate_params:
max_budget: 100 # Optional[float], optional): upperbound of $100, for all /key/generate requests
budget_duration: "10d" # Optional[str], optional): upperbound of 10 days for budget_duration values
duration: "30d" # Optional[str], optional): upperbound of 30 days for all /key/generate requests
max_parallel_requests: 1000 # (Optional[int], optional): Max number of requests that can be made in parallel. Defaults to None.
tpm_limit: 1000 #(Optional[int], optional): Tpm limit. Defaults to None.
rpm_limit: 1000 #(Optional[int], optional): Rpm limit. Defaults to None.

Expected Behavior

  • Send a /key/generate request with max_budget=200
  • Key will be created with max_budget=100 since 100 is the upper bound

Default /key/generate params

Use this, if you need to control the default max_budget or any key/generate param per key.

When a /key/generate request does not specify max_budget, it will use the max_budget specified in default_key_generate_params

Set litellm_settings:default_key_generate_params:

litellm_settings:
default_key_generate_params:
max_budget: 1.5000
models: ["azure-gpt-3.5"]
duration: # blank means `null`
metadata: {"setting":"default"}
team_id: "core-infra"

Next Steps - Set Budgets, Rate Limits per Virtual Key

Follow this doc to set budgets, rate limiters per virtual key with LiteLLM

Endpoint Reference (Spec)

Keys

👉 API REFERENCE DOCS

Users

👉 API REFERENCE DOCS

Teams

👉 API REFERENCE DOCS