Exception Mapping
LiteLLM maps exceptions across all providers to their OpenAI counterparts.
All exceptions can be imported from litellm
- e.g. from litellm import BadRequestError
LiteLLM Exceptions​
Status Code | Error Type | Inherits from | Description |
---|---|---|---|
400 | BadRequestError | openai.BadRequestError | |
400 | UnsupportedParamsError | litellm.BadRequestError | Raised when unsupported params are passed |
400 | ContextWindowExceededError | litellm.BadRequestError | Special error type for context window exceeded error messages - enables context window fallbacks |
400 | ContentPolicyViolationError | litellm.BadRequestError | Special error type for content policy violation error messages - enables content policy fallbacks |
400 | InvalidRequestError | openai.BadRequestError | Deprecated error, use BadRequestError instead |
401 | AuthenticationError | openai.AuthenticationError | |
403 | PermissionDeniedError | openai.PermissionDeniedError | |
404 | NotFoundError | openai.NotFoundError | raise when invalid models passed, example gpt-8 |
408 | Timeout | openai.APITimeoutError | Raised when a timeout occurs |
422 | UnprocessableEntityError | openai.UnprocessableEntityError | |
429 | RateLimitError | openai.RateLimitError | |
500 | APIConnectionError | openai.APIConnectionError | If any unmapped error is returned, we return this error |
500 | APIError | openai.APIError | Generic 500-status code error |
503 | ServiceUnavailableError | openai.APIStatusError | If provider returns a service unavailable error, this error is raised |
>=500 | InternalServerError | openai.InternalServerError | If any unmapped 500-status code error is returned, this error is raised |
N/A | APIResponseValidationError | openai.APIResponseValidationError | If Rules are used, and request/response fails a rule, this error is raised |
N/A | BudgetExceededError | Exception | Raised for proxy, when budget is exceeded |
N/A | JSONSchemaValidationError | litellm.APIResponseValidationError | Raised when response does not match expected json schema - used if response_schema param passed in with enforce_validation=True |
N/A | MockException | Exception | Internal exception, raised by mock_completion class. Do not use directly |
N/A | OpenAIError | openai.OpenAIError | Deprecated internal exception, inherits from openai.OpenAIError. |
Base case we return APIConnectionError
All our exceptions inherit from OpenAI's exception types, so any error-handling you have for that, should work out of the box with LiteLLM.
For all cases, the exception returned inherits from the original OpenAI Exception but contains 3 additional attributes:
- status_code - the http status code of the exception
- message - the error message
- llm_provider - the provider raising the exception
Usage​
import litellm
import openai
try:
response = litellm.completion(
model="gpt-4",
messages=[
{
"role": "user",
"content": "hello, write a 20 pageg essay"
}
],
timeout=0.01, # this will raise a timeout exception
)
except openai.APITimeoutError as e:
print("Passed: Raised correct exception. Got openai.APITimeoutError\nGood Job", e)
print(type(e))
pass
Usage - Catching Streaming Exceptions​
import litellm
try:
response = litellm.completion(
model="gpt-3.5-turbo",
messages=[
{
"role": "user",
"content": "hello, write a 20 pg essay"
}
],
timeout=0.0001, # this will raise an exception
stream=True,
)
for chunk in response:
print(chunk)
except openai.APITimeoutError as e:
print("Passed: Raised correct exception. Got openai.APITimeoutError\nGood Job", e)
print(type(e))
pass
except Exception as e:
print(f"Did not raise error `openai.APITimeoutError`. Instead raised error type: {type(e)}, Error: {e}")
Usage - Should you retry exception?​
import litellm
import openai
try:
response = litellm.completion(
model="gpt-4",
messages=[
{
"role": "user",
"content": "hello, write a 20 pageg essay"
}
],
timeout=0.01, # this will raise a timeout exception
)
except openai.APITimeoutError as e:
should_retry = litellm._should_retry(e.status_code)
print(f"should_retry: {should_retry}")
Details​
To see how it's implemented - check out the code
Create an issue or make a PR if you want to improve the exception mapping.
Note For OpenAI and Azure we return the original exception (since they're of the OpenAI Error type). But we add the 'llm_provider' attribute to them. See code
Custom mapping list​
Base case - we return litellm.APIConnectionError
exception (inherits from openai's APIConnectionError exception).
custom_llm_provider | Timeout | ContextWindowExceededError | BadRequestError | NotFoundError | ContentPolicyViolationError | AuthenticationError | APIError | RateLimitError | ServiceUnavailableError | PermissionDeniedError | UnprocessableEntityError |
---|---|---|---|---|---|---|---|---|---|---|---|
openai | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||
watsonx | ✓ | ||||||||||
text-completion-openai | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||
custom_openai | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||
openai_compatible_providers | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||
anthropic | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
replicate | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
bedrock | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||
sagemaker | ✓ | ✓ | |||||||||
vertex_ai | ✓ | ✓ | ✓ | ✓ | |||||||
palm | ✓ | ✓ | ✓ | ||||||||
gemini | ✓ | ✓ | ✓ | ||||||||
cloudflare | ✓ | ✓ | |||||||||
cohere | ✓ | ✓ | ✓ | ✓ | |||||||
cohere_chat | ✓ | ✓ | ✓ | ✓ | |||||||
huggingface | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||
ai21 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||
nlp_cloud | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
together_ai | ✓ | ✓ | ✓ | ✓ | |||||||
aleph_alpha | ✓ | ✓ | |||||||||
ollama | ✓ | ✓ | ✓ | ||||||||
ollama_chat | ✓ | ✓ | ✓ | ||||||||
vllm | ✓ | ✓ | |||||||||
azure | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
- "✓" indicates that the specified
custom_llm_provider
can raise the corresponding exception. - Empty cells indicate the lack of association or that the provider does not raise that particular exception type as indicated by the function.
For a deeper understanding of these exceptions, you can check out this implementation for additional insights.
The ContextWindowExceededError
is a sub-class of InvalidRequestError
. It was introduced to provide more granularity for exception-handling scenarios. Please refer to this issue to learn more.
Contributions to improve exception mapping are welcome