Streaming + Async
Feature | LiteLLM SDK | LiteLLM Proxy |
---|---|---|
Streaming | ✅ start here | ✅ start here |
Async | ✅ start here | ✅ start here |
Async Streaming | ✅ start here | ✅ start here |
Streaming Responses​
LiteLLM supports streaming the model response back by passing stream=True
as an argument to the completion function
Usage​
from litellm import completion
messages = [{"role": "user", "content": "Hey, how's it going?"}]
response = completion(model="gpt-3.5-turbo", messages=messages, stream=True)
for part in response:
print(part.choices[0].delta.content or "")
Helper function​
LiteLLM also exposes a helper function to rebuild the complete streaming response from the list of chunks.
from litellm import completion
messages = [{"role": "user", "content": "Hey, how's it going?"}]
response = completion(model="gpt-3.5-turbo", messages=messages, stream=True)
for chunk in response:
chunks.append(chunk)
print(litellm.stream_chunk_builder(chunks, messages=messages))
Async Completion​
Asynchronous Completion with LiteLLM. LiteLLM provides an asynchronous version of the completion function called acompletion
Usage​
from litellm import acompletion
import asyncio
async def test_get_response():
user_message = "Hello, how are you?"
messages = [{"content": user_message, "role": "user"}]
response = await acompletion(model="gpt-3.5-turbo", messages=messages)
return response
response = asyncio.run(test_get_response())
print(response)
Async Streaming​
We've implemented an __anext__()
function in the streaming object returned. This enables async iteration over the streaming object.
Usage​
Here's an example of using it with openai.
from litellm import acompletion
import asyncio, os, traceback
async def completion_call():
try:
print("test acompletion + streaming")
response = await acompletion(
model="gpt-3.5-turbo",
messages=[{"content": "Hello, how are you?", "role": "user"}],
stream=True
)
print(f"response: {response}")
async for chunk in response:
print(chunk)
except:
print(f"error occurred: {traceback.format_exc()}")
pass
asyncio.run(completion_call())
Error Handling - Infinite Loops​
Sometimes a model might enter an infinite loop, and keep repeating the same chunks - e.g. issue
Break out of it with:
litellm.REPEATED_STREAMING_CHUNK_LIMIT = 100 # # catch if model starts looping the same chunk while streaming. Uses high default to prevent false positives.
LiteLLM provides error handling for this, by checking if a chunk is repeated 'n' times (Default is 100). If it exceeds that limit, it will raise a litellm.InternalServerError
, to allow retry logic to happen.
- SDK
- PROXY
import litellm
import os
litellm.set_verbose = False
loop_amount = litellm.REPEATED_STREAMING_CHUNK_LIMIT + 1
chunks = [
litellm.ModelResponse(**{
"id": "chatcmpl-123",
"object": "chat.completion.chunk",
"created": 1694268190,
"model": "gpt-3.5-turbo-0125",
"system_fingerprint": "fp_44709d6fcb",
"choices": [
{"index": 0, "delta": {"content": "How are you?"}, "finish_reason": "stop"}
],
}, stream=True)
] * loop_amount
completion_stream = litellm.ModelResponseListIterator(model_responses=chunks)
response = litellm.CustomStreamWrapper(
completion_stream=completion_stream,
model="gpt-3.5-turbo",
custom_llm_provider="cached_response",
logging_obj=litellm.Logging(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hey"}],
stream=True,
call_type="completion",
start_time=time.time(),
litellm_call_id="12345",
function_id="1245",
),
)
for chunk in response:
continue # expect to raise InternalServerError
Define this on your config.yaml on the proxy.
litellm_settings:
REPEATED_STREAMING_CHUNK_LIMIT: 100 # this overrides the litellm default
The proxy uses the litellm SDK. To validate this works, try the 'SDK' code snippet.