Skip to main content

Proxy - Load Balancing

Load balance multiple instances of the same model

The proxy will handle routing requests (using LiteLLM's Router). Set rpm in the config if you want maximize throughput

info

For more details on routing strategies / params, see Routing

Quick Start - Load Balancing​

Step 1 - Set deployments on config​

Example config below. Here requests with model=gpt-3.5-turbo will be routed across multiple instances of azure/gpt-3.5-turbo

model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/<your-deployment-name>
api_base: <your-azure-endpoint>
api_key: <your-azure-api-key>
rpm: 6 # Rate limit for this deployment: in requests per minute (rpm)
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/gpt-turbo-small-ca
api_base: https://my-endpoint-canada-berri992.openai.azure.com/
api_key: <your-azure-api-key>
rpm: 6
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/gpt-turbo-large
api_base: https://openai-france-1234.openai.azure.com/
api_key: <your-azure-api-key>
rpm: 1440

router_settings:
routing_strategy: simple-shuffle # Literal["simple-shuffle", "least-busy", "usage-based-routing","latency-based-routing"], default="simple-shuffle"
model_group_alias: {"gpt-4": "gpt-3.5-turbo"} # all requests with `gpt-4` will be routed to models with `gpt-3.5-turbo`
num_retries: 2
timeout: 30 # 30 seconds
redis_host: <your redis host> # set this when using multiple litellm proxy deployments, load balancing state stored in redis
redis_password: <your redis password>
redis_port: 1992
info

Detailed information about routing strategies can be found here

Step 2: Start Proxy with config​

$ litellm --config /path/to/config.yaml

Test - Simple Call​

Here requests with model=gpt-3.5-turbo will be routed across multiple instances of azure/gpt-3.5-turbo

👉 Key Change: model="gpt-3.5-turbo"

Check the model_id in Response Headers to make sure the requests are being load balanced

import openai
client = openai.OpenAI(
api_key="anything",
base_url="http://0.0.0.0:4000"
)

response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
]
)

print(response)

Test - Loadbalancing​

In this request, the following will occur:

  1. A rate limit exception will be raised
  2. LiteLLM proxy will retry the request on the model group (default is 3).
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "gpt-3.5-turbo",
"messages": [
{"role": "user", "content": "Hi there!"}
],
"mock_testing_rate_limit_error": true
}'

See Code

Load Balancing using multiple litellm instances (Kubernetes, Auto Scaling)​

LiteLLM Proxy supports sharing rpm/tpm shared across multiple litellm instances, pass redis_host, redis_password and redis_port to enable this. (LiteLLM will use Redis to track rpm/tpm usage )

Example config

model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/<your-deployment-name>
api_base: <your-azure-endpoint>
api_key: <your-azure-api-key>
rpm: 6 # Rate limit for this deployment: in requests per minute (rpm)
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/gpt-turbo-small-ca
api_base: https://my-endpoint-canada-berri992.openai.azure.com/
api_key: <your-azure-api-key>
rpm: 6
router_settings:
redis_host: <your redis host>
redis_password: <your redis password>
redis_port: 1992

Router settings on config - routing_strategy, model_group_alias​

Expose an 'alias' for a 'model_name' on the proxy server.

model_group_alias: {
"gpt-4": "gpt-3.5-turbo"
}

These aliases are shown on /v1/models, /v1/model/info, and /v1/model_group/info by default.

litellm.Router() settings can be set under router_settings. You can set model_group_alias, routing_strategy, num_retries,timeout . See all Router supported params here

Usage​

Example config with router_settings

model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/<your-deployment-name>
api_base: <your-azure-endpoint>
api_key: <your-azure-api-key>

router_settings:
model_group_alias: {"gpt-4": "gpt-3.5-turbo"} # all requests with `gpt-4` will be routed to models

Hide Alias Models​

Use this if you want to set-up aliases for:

  1. typos
  2. minor model version changes
  3. case sensitive changes between updates
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/<your-deployment-name>
api_base: <your-azure-endpoint>
api_key: <your-azure-api-key>

router_settings:
model_group_alias:
"GPT-3.5-turbo": # alias
model: "gpt-3.5-turbo" # Actual model name in 'model_list'
hidden: true # Exclude from `/v1/models`, `/v1/model/info`, `/v1/model_group/info`

Complete Spec​

model_group_alias: Optional[Dict[str, Union[str, RouterModelGroupAliasItem]]] = {}


class RouterModelGroupAliasItem(TypedDict):
model: str
hidden: bool # if 'True', don't return on `/v1/models`, `/v1/model/info`, `/v1/model_group/info`