/images/edits
LiteLLM provides image editing functionality that maps to OpenAI's /images/edits API endpoint. Now supports both single and multiple image editing.
| Feature | Supported | Notes |
|---|---|---|
| Cost Tracking | ✅ | Works with all supported models |
| Logging | ✅ | Works across all integrations |
| End-user Tracking | ✅ | |
| Fallbacks | ✅ | Works between supported models |
| Loadbalancing | ✅ | Works between supported models |
| Supported operations | Create image edits | Single and multiple images supported |
| Supported LiteLLM SDK Versions | 1.63.8+ | Gemini support requires 1.79.3+ |
| Supported LiteLLM Proxy Versions | 1.71.1+ | Gemini support requires 1.79.3+ |
| Supported LLM providers | OpenAI, Gemini (Google AI Studio) | Gemini supports the new gemini-2.5-flash-image family |
⚡️See all supported models and providers at models.litellm.ai
Usage
LiteLLM Python SDK
- OpenAI
Basic Image Edit
OpenAI Image Edit
import litellm
# Edit an image with a prompt
response = litellm.image_edit(
model="gpt-image-1",
image=open("original_image.png", "rb"),
prompt="Add a red hat to the person in the image",
n=1,
size="1024x1024"
)
print(response)
Multiple Images Edit
OpenAI Multiple Images Edit
import litellm
# Edit multiple images with a prompt
response = litellm.image_edit(
model="gpt-image-1",
image=[
open("image1.png", "rb"),
open("image2.png", "rb"),
open("image3.png", "rb")
],
prompt="Apply vintage filter to all images",
n=1,
size="1024x1024"
)
print(response)
Image Edit with Mask
OpenAI Image Edit with Mask
import litellm
# Edit an image with a mask to specify the area to edit
response = litellm.image_edit(
model="gpt-image-1",
image=open("original_image.png", "rb"),
mask=open("mask_image.png", "rb"), # Transparent areas will be edited
prompt="Replace the background with a beach scene",
n=2,
size="512x512",
response_format="url"
)
print(response)
Async Image Edit
Async OpenAI Image Edit
import litellm
import asyncio
async def edit_image():
response = await litellm.aimage_edit(
model="gpt-image-1",
image=open("original_image.png", "rb"),
prompt="Make the image look like a painting",
n=1,
size="1024x1024",
response_format="b64_json"
)
return response
# Run the async function
response = asyncio.run(edit_image())
print(response)
Async Multiple Images Edit
Async OpenAI Multiple Images Edit
import litellm
import asyncio
async def edit_multiple_images():
response = await litellm.aimage_edit(
model="gpt-image-1",
image=[
open("portrait1.png", "rb"),
open("portrait2.png", "rb")
],
prompt="Add professional lighting to the portraits",
n=1,
size="1024x1024",
response_format="url"
)
return response
# Run the async function
response = asyncio.run(edit_multiple_images())
print(response)
Image Edit with Custom Parameters
OpenAI Image Edit with Custom Parameters
import litellm
# Edit image with additional parameters
response = litellm.image_edit(
model="gpt-image-1",
image=open("portrait.png", "rb"),
prompt="Add sunglasses and a smile",
n=3,
size="1024x1024",
response_format="url",
user="user-123",
timeout=60,
extra_headers={"Custom-Header": "value"}
)
print(f"Generated {len(response.data)} image variations")
for i, image_data in enumerate(response.data):
print(f"Image {i+1}: {image_data.url}")
</TabItem>
<TabItem value="gemini" label="Gemini">
#### Basic Image Edit
```python showLineNumbers title="Gemini Image Edit"
import base64
import os
from litellm import image_edit
os.environ["GEMINI_API_KEY"] = "your-api-key"
response = image_edit(
model="gemini/gemini-2.5-flash-image",
image=open("original_image.png", "rb"),
prompt="Add aurora borealis to the night sky",
size="1792x1024", # mapped to aspectRatio=16:9 for Gemini
)
edited_image_bytes = base64.b64decode(response.data[0].b64_json)
with open("edited_image.png", "wb") as f:
f.write(edited_image_bytes)
Multiple Images Edit
Gemini Multiple Images Edit
import base64
import os
from litellm import image_edit
os.environ["GEMINI_API_KEY"] = "your-api-key"
response = image_edit(
model="gemini/gemini-2.5-flash-image",
image=[
open("scene.png", "rb"),
open("style_reference.png", "rb"),
],
prompt="Blend the reference style into the scene while keeping the subject sharp.",
)
for idx, image_obj in enumerate(response.data):
with open(f"gemini_edit_{idx}.png", "wb") as f:
f.write(base64.b64decode(image_obj.b64_json))
LiteLLM Proxy with OpenAI SDK
- OpenAI
First, add this to your litellm proxy config.yaml:
OpenAI Proxy Configuration
model_list:
- model_name: gpt-image-1
litellm_params:
model: gpt-image-1
api_key: os.environ/OPENAI_API_KEY
Start the LiteLLM proxy server:
Start LiteLLM Proxy Server
litellm --config /path/to/config.yaml
# RUNNING on http://0.0.0.0:4000
Basic Image Edit via Proxy
OpenAI Proxy Image Edit
from openai import OpenAI
# Initialize client with your proxy URL
client = OpenAI(
base_url="http://localhost:4000", # Your proxy URL
api_key="your-api-key" # Your proxy API key
)
# Edit an image
response = client.images.edit(
model="gpt-image-1",
image=open("original_image.png", "rb"),
prompt="Add a red hat to the person in the image",
n=1,
size="1024x1024"
)
print(response)
cURL Example
cURL Image Edit Request
curl -X POST "http://localhost:4000/v1/images/edits" \
-H "Authorization: Bearer your-api-key" \
-F "model=gpt-image-1" \
-F "image=@original_image.png" \
-F "mask=@mask_image.png" \
-F "prompt=Add a beautiful sunset in the background" \
-F "n=1" \
-F "size=1024x1024" \
-F "response_format=url"
cURL Multiple Images Example
cURL Multiple Images Edit Request
curl -X POST "http://localhost:4000/v1/images/edits" \
-H "Authorization: Bearer your-api-key" \
-F "model=gpt-image-1" \
-F "image=@image1.png" \
-F "image=@image2.png" \
-F "image=@image3.png" \
-F "prompt=Apply artistic filter to all images" \
-F "n=1" \
-F "size=1024x1024" \
-F "response_format=url"
</TabItem>
<TabItem value="gemini" label="Gemini">
1. Add the Gemini image edit model to your `config.yaml`:
```yaml showLineNumbers title="Gemini Proxy Configuration"
model_list:
- model_name: gemini-image-edit
litellm_params:
model: gemini/gemini-2.5-flash-image
api_key: os.environ/GEMINI_API_KEY
- Start the LiteLLM proxy server:
Start LiteLLM Proxy Server
litellm --config /path/to/config.yaml
- Make an image edit request (Gemini responses are base64-only):
Gemini Proxy Image Edit
curl -X POST "http://0.0.0.0:4000/v1/images/edits" \
-H "Authorization: Bearer <YOUR-LITELLM-KEY>" \
-F "model=gemini-image-edit" \
-F "image=@original_image.png" \
-F "prompt=Add a warm golden-hour glow to the scene" \
-F "size=1024x1024"
Supported Image Edit Parameters
| Parameter | Type | Description | Required |
|---|---|---|---|
image | FileTypes | The image to edit. Must be a valid PNG file, less than 4MB, and square. | ✅ |
prompt | str | A text description of the desired image edit. | ✅ |
model | str | The model to use for image editing | Optional (defaults to dall-e-2) |
mask | str | An additional image whose fully transparent areas indicate where the original image should be edited. Must be a valid PNG file, less than 4MB, and have the same dimensions as image. | Optional |
n | int | The number of images to generate. Must be between 1 and 10. | Optional (defaults to 1) |
size | str | The size of the generated images. Must be one of 256x256, 512x512, or 1024x1024. | Optional (defaults to 1024x1024) |
response_format | str | The format in which the generated images are returned. Must be one of url or b64_json. | Optional (defaults to url) |
user | str | A unique identifier representing your end-user. | Optional |
Response Format
The response follows the OpenAI Images API format:
Image Edit Response Structure
{
"created": 1677649800,
"data": [
{
"url": "https://example.com/edited_image_1.png"
},
{
"url": "https://example.com/edited_image_2.png"
}
]
}
For b64_json format:
Base64 Response Structure
{
"created": 1677649800,
"data": [
{
"b64_json": "iVBORw0KGgoAAAANSUhEUgAA..."
}
]
}