Speech to Text
Use this to loadbalance across Azure + OpenAI.
Quick Start​
from litellm import transcription
import os
# set api keys
os.environ["OPENAI_API_KEY"] = ""
audio_file = open("/path/to/audio.mp3", "rb")
response = transcription(model="whisper", file=audio_file)
print(f"response: {response}")
Proxy Usage​
Add model to config​
- OpenAI
- OpenAI + Azure
model_list:
- model_name: whisper
litellm_params:
model: whisper-1
api_key: os.environ/OPENAI_API_KEY
model_info:
mode: audio_transcription
general_settings:
master_key: sk-1234
model_list:
- model_name: whisper
litellm_params:
model: whisper-1
api_key: os.environ/OPENAI_API_KEY
model_info:
mode: audio_transcription
- model_name: whisper
litellm_params:
model: azure/azure-whisper
api_version: 2024-02-15-preview
api_base: os.environ/AZURE_EUROPE_API_BASE
api_key: os.environ/AZURE_EUROPE_API_KEY
model_info:
mode: audio_transcription
general_settings:
master_key: sk-1234
Start proxy​
litellm --config /path/to/config.yaml
# RUNNING on http://0.0.0.0:8000
Test​
- Curl
- OpenAI
curl --location 'http://0.0.0.0:8000/v1/audio/transcriptions' \
--header 'Authorization: Bearer sk-1234' \
--form 'file=@"/Users/krrishdholakia/Downloads/gettysburg.wav"' \
--form 'model="whisper"'
from openai import OpenAI
client = openai.OpenAI(
api_key="sk-1234",
base_url="http://0.0.0.0:8000"
)
audio_file = open("speech.mp3", "rb")
transcript = client.audio.transcriptions.create(
model="whisper",
file=audio_file
)