/rag/ingest
All-in-one document ingestion pipeline: Upload → Chunk → Embed → Vector Store
| Feature | Supported |
|---|---|
| Cost Tracking | ❌ |
| Logging | ✅ |
| Supported Providers | openai, bedrock |
Quick Start
OpenAI
Ingest to OpenAI vector store
curl -X POST "http://localhost:4000/v1/rag/ingest" \
-H "Authorization: Bearer sk-1234" \
-H "Content-Type: application/json" \
-d "{
\"file\": {
\"filename\": \"document.txt\",
\"content\": \"$(base64 -i document.txt)\",
\"content_type\": \"text/plain\"
},
\"ingest_options\": {
\"vector_store\": {
\"custom_llm_provider\": \"openai\"
}
}
}"
Bedrock
Ingest to Bedrock Knowledge Base
curl -X POST "http://localhost:4000/v1/rag/ingest" \
-H "Authorization: Bearer sk-1234" \
-H "Content-Type: application/json" \
-d "{
\"file\": {
\"filename\": \"document.txt\",
\"content\": \"$(base64 -i document.txt)\",
\"content_type\": \"text/plain\"
},
\"ingest_options\": {
\"vector_store\": {
\"custom_llm_provider\": \"bedrock\"
}
}
}"
Response
{
"id": "ingest_abc123",
"status": "completed",
"vector_store_id": "vs_xyz789",
"file_id": "file_123"
}
Query the Vector Store
After ingestion, query with /vector_stores/{vector_store_id}/search:
Search the vector store
curl -X POST "http://localhost:4000/v1/vector_stores/vs_xyz789/search" \
-H "Authorization: Bearer sk-1234" \
-H "Content-Type: application/json" \
-d '{
"query": "What is the main topic?",
"max_num_results": 5
}'
End-to-End Example
OpenAI
1. Ingest Document
Step 1: Ingest
curl -X POST "http://localhost:4000/v1/rag/ingest" \
-H "Authorization: Bearer sk-1234" \
-H "Content-Type: application/json" \
-d "{
\"file\": {
\"filename\": \"test_document.txt\",
\"content\": \"$(base64 -i test_document.txt)\",
\"content_type\": \"text/plain\"
},
\"ingest_options\": {
\"name\": \"test-basic-ingest\",
\"vector_store\": {
\"custom_llm_provider\": \"openai\"
}
}
}"
Response:
{
"id": "ingest_d834f544-fc5e-4751-902d-fb0bcc183b85",
"status": "completed",
"vector_store_id": "vs_692658d337c4819183f2ad8488d12fc9",
"file_id": "file-M2pJJiWH56cfUP4Fe7rJay"
}
2. Query
Step 2: Query
curl -X POST "http://localhost:4000/v1/vector_stores/vs_692658d337c4819183f2ad8488d12fc9/search" \
-H "Authorization: Bearer sk-1234" \
-H "Content-Type: application/json" \
-d '{
"query": "What is LiteLLM?",
"custom_llm_provider": "openai"
}'
Response:
{
"object": "vector_store.search_results.page",
"search_query": ["What is LiteLLM?"],
"data": [
{
"file_id": "file-M2pJJiWH56cfUP4Fe7rJay",
"filename": "test_document.txt",
"score": 0.4004629778869299,
"attributes": {},
"content": [
{
"type": "text",
"text": "Test document abc123 for RAG ingestion.\nThis is a sample document to test the RAG ingest API.\nLiteLLM provides a unified interface for vector stores."
}
]
}
],
"has_more": false,
"next_page": null
}
Request Parameters
Top-Level
| Parameter | Type | Required | Description |
|---|---|---|---|
file | object | One of file/file_url/file_id required | Base64-encoded file |
file.filename | string | Yes | Filename with extension |
file.content | string | Yes | Base64-encoded content |
file.content_type | string | Yes | MIME type (e.g., text/plain) |
file_url | string | One of file/file_url/file_id required | URL to fetch file from |
file_id | string | One of file/file_url/file_id required | Existing file ID |
ingest_options | object | Yes | Pipeline configuration |
ingest_options
| Parameter | Type | Required | Description |
|---|---|---|---|
vector_store | object | Yes | Vector store configuration |
name | string | No | Pipeline name for logging |
vector_store (OpenAI)
| Parameter | Type | Default | Description |
|---|---|---|---|
custom_llm_provider | string | - | "openai" |
vector_store_id | string | auto-create | Existing vector store ID |
vector_store (Bedrock)
| Parameter | Type | Default | Description |
|---|---|---|---|
custom_llm_provider | string | - | "bedrock" |
vector_store_id | string | auto-create | Existing Knowledge Base ID |
wait_for_ingestion | boolean | false | Wait for indexing to complete |
ingestion_timeout | integer | 300 | Timeout in seconds (if waiting) |
s3_bucket | string | auto-create | S3 bucket for documents |
s3_prefix | string | "data/" | S3 key prefix |
embedding_model | string | amazon.titan-embed-text-v2:0 | Bedrock embedding model |
aws_region_name | string | us-west-2 | AWS region |
Bedrock Auto-Creation
When vector_store_id is omitted, LiteLLM automatically creates:
- S3 bucket for document storage
- OpenSearch Serverless collection
- IAM role with required permissions
- Bedrock Knowledge Base
- Data Source
Input Examples
File (Base64)
Request body
{
"file": {
"filename": "document.txt",
"content": "<base64-encoded-content>",
"content_type": "text/plain"
},
"ingest_options": {
"vector_store": {"custom_llm_provider": "openai"}
}
}
File URL
Ingest from URL
curl -X POST "http://localhost:4000/v1/rag/ingest" \
-H "Authorization: Bearer sk-1234" \
-H "Content-Type: application/json" \
-d '{
"file_url": "https://example.com/document.pdf",
"ingest_options": {"vector_store": {"custom_llm_provider": "openai"}}
}'