✨ [BETA] LiteLLM Managed Files with Finetuning
This is a free LiteLLM Enterprise feature.
Available via the litellm[proxy]
package or any litellm
docker image.
Property | Value | Comments |
---|---|---|
Proxy | ✅ | |
SDK | ❌ | Requires postgres DB for storing file ids. |
Available across all Batch providers | ✅ | |
Supported endpoints | /fine_tuning/jobs |
Overview
Use this to:
- Create Finetuning jobs across OpenAI/Azure/Vertex AI in the OpenAI format (no additional
custom_llm_provider
param required). - Control finetuning model access by key/user/team (same as chat completion models)
(Proxy Admin) Usage
Here's how to give developers access to your Finetuning models.
1. Setup config.yaml
Include /fine_tuning
in the supported_endpoints
list. Tells developers this model supports the /fine_tuning
endpoint.
model_list:
- model_name: "gpt-4.1-openai"
litellm_params:
model: gpt-4.1
api_key: os.environ/OPENAI_API_KEY
model_info:
supported_endpoints: ["/chat/completions", "/fine_tuning"]
2. Create Virtual Key
curl -L -X POST 'https://{PROXY_BASE_URL}/key/generate' \
-H 'Authorization: Bearer ${PROXY_API_KEY}' \
-H 'Content-Type: application/json' \
-d '{"models": ["gpt-4.1-openai"]}'
You can now use the virtual key to access the finetuning models (See Developer flow).
(Developer) Usage
Here's how to create a LiteLLM managed file and execute Finetuning CRUD operations with the file.
1. Create request.jsonl
{"messages": [{"role": "system", "content": "Clippy is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "What's the capital of France?"}, {"role": "assistant", "content": "Paris, as if everyone doesn't know that already."}]}
{"messages": [{"role": "system", "content": "Clippy is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "Who wrote 'Romeo and Juliet'?"}, {"role": "assistant", "content": "Oh, just some guy named William Shakespeare. Ever heard of him?"}]}
2. Upload File
Specify target_model_names: "<model-name>"
to enable LiteLLM managed files and request validation.
model-name should be the same as the model-name in the request.jsonl
from openai import OpenAI
client = OpenAI(
base_url="http://0.0.0.0:4000",
api_key="sk-1234",
)
# Upload file
finetuning_input_file = client.files.create(
file=open("./request.jsonl", "rb"),
purpose="fine-tune",
extra_body={"target_model_names": "gpt-4.1-openai"}
)
print(finetuning_input_file)
Where is the file written?:
All gpt-4.1-openai deployments will be written to. This enables loadbalancing across all gpt-4.1-openai deployments in Step 3, when a job is created. Once the job is created, any retrieve/list/cancel operations will be routed to that deployment.
3. Create the Finetuning Job
... # Step 2
file_id = finetuning_input_file.id
# Create Finetuning Job
ft_job = client.fine_tuning.jobs.create(
model="gpt-4.1-openai", # litellm public model name you want to finetune
training_file=file_id,
)
4. Retrieve Finetuning Job
... # Step 3
response = client.fine_tuning.jobs.retrieve(ft_job.id)
print(response)
5. List Finetuning Jobs
...
client.fine_tuning.jobs.list(extra_body={"target_model_names": "gpt-4.1-openai"})
6. Cancel a Finetuning Job
...
cancel_ft_job = client.fine_tuning.jobs.cancel(
fine_tuning_job_id=ft_job.id, # fine tuning job id
)
E2E Example
from openai import OpenAI
client = OpenAI(
base_url="http://0.0.0.0:4000",
api_key="sk-...",
max_retries=0
)
# Upload file
finetuning_input_file = client.files.create(
file=open("./fine_tuning.jsonl", "rb"), # {"model": "azure-gpt-4o"} <-> {"model": "gpt-4o-my-special-deployment"}
purpose="fine-tune",
extra_body={"target_model_names": "gpt-4.1-openai"} # 👈 Tells litellm which regions/projects to write the file in.
)
print(finetuning_input_file) # file.id = "litellm_proxy/..." = {"model_name": {"deployment_id": "deployment_file_id"}}
file_id = finetuning_input_file.id
# # file_id = "bGl0ZWxs..."
# ## create fine-tuning job
ft_job = client.fine_tuning.jobs.create(
model="gpt-4.1-openai", # litellm model name you want to finetune
training_file=file_id,
)
print(f"ft_job: {ft_job}")
ft_job_id = ft_job.id
## cancel fine-tuning job
cancel_ft_job = client.fine_tuning.jobs.cancel(
fine_tuning_job_id=ft_job_id, # fine tuning job id
)
print("response from cancel ft job={}".format(cancel_ft_job))
# list fine-tuning jobs
list_ft_jobs = client.fine_tuning.jobs.list(
extra_query={"target_model_names": "gpt-4.1-openai"} # tell litellm proxy which provider to use
)
print("list of ft jobs={}".format(list_ft_jobs))
# get fine-tuning job
response = client.fine_tuning.jobs.retrieve(ft_job.id)
print(response)
FAQ
Where are my files written?
When a target_model_names
is specified, the file is written to all deployments that match the target_model_names
.
No additional infrastructure is required.