Use LiteLLM with Gemini CLI
This tutorial shows you how to integrate the Gemini CLI with LiteLLM Proxy, allowing you to route requests through LiteLLM's unified interface.
This integration is supported from LiteLLM v1.73.3-nightly and above.
Benefits of using gemini-cli with LiteLLMโ
When you use gemini-cli with LiteLLM you get the following benefits:
Developer Benefits:
- Universal Model Access: Use any LiteLLM supported model (Anthropic, OpenAI, Vertex AI, Bedrock, etc.) through the gemini-cli interface.
- Higher Rate Limits & Reliability: Load balance across multiple models and providers to avoid hitting individual provider limits, with fallbacks to ensure you get responses even if one provider fails.
Proxy Admin Benefits:
- Centralized Management: Control access to all models through a single LiteLLM proxy instance without giving your developers API Keys to each provider.
- Budget Controls: Set spending limits and track costs across all gemini-cli usage.
Prerequisitesโ
Before you begin, ensure you have:
- Node.js and npm installed on your system
- A running LiteLLM Proxy instance
- A valid LiteLLM Proxy API key
- Git installed for cloning the repository
Quick Start Guideโ
Step 1: Install Gemini CLIโ
Clone the Gemini CLI repository and navigate to the project directory:
npm install -g @google/gemini-cli
Step 2: Configure Gemini CLI for LiteLLM Proxyโ
Configure the Gemini CLI to point to your LiteLLM Proxy instance by setting the required environment variables:
export GOOGLE_GEMINI_BASE_URL="http://localhost:4000"
export GEMINI_API_KEY=sk-1234567890
Note: Replace the values with your actual LiteLLM Proxy configuration:
BASE_URL
: The URL where your LiteLLM Proxy is runningGEMINI_API_KEY
: Your LiteLLM Proxy API key
Step 3: Build and Start Gemini CLIโ
Build the project and start the CLI:
gemini
Step 4: Test the Integrationโ
Once the CLI is running, you can send test requests. These requests will be automatically routed through LiteLLM Proxy to the configured Gemini model.
The CLI will now use LiteLLM Proxy as the backend, giving you access to LiteLLM's features like:
- Request/response logging
- Rate limiting
- Cost tracking
- Model routing and fallbacks
Advancedโ
Use Anthropic, OpenAI, Bedrock, etc. models on gemini-cliโ
In order to use non-gemini models on gemini-cli, you need to set a model_group_alias
in the LiteLLM Proxy config. This tells LiteLLM that requests with model = gemini-2.5-pro
should be routed to your desired model from any provider.
- Anthropic
- OpenAI
- Bedrock
- Multi-Provider Load Balancing
Route gemini-2.5-pro
requests to Claude Sonnet:
model_list:
- model_name: claude-sonnet-4-20250514
litellm_params:
model: anthropic/claude-3-5-sonnet-20241022
api_key: os.environ/ANTHROPIC_API_KEY
router_settings:
model_group_alias: {"gemini-2.5-pro": "claude-sonnet-4-20250514"}
Route gemini-2.5-pro
requests to GPT-4o:
model_list:
- model_name: gpt-4o-model
litellm_params:
model: gpt-4o
api_key: os.environ/OPENAI_API_KEY
router_settings:
model_group_alias: {"gemini-2.5-pro": "gpt-4o-model"}
Route gemini-2.5-pro
requests to Claude on Bedrock:
model_list:
- model_name: bedrock-claude
litellm_params:
model: bedrock/anthropic.claude-3-5-sonnet-20241022-v2:0
aws_access_key_id: os.environ/AWS_ACCESS_KEY_ID
aws_secret_access_key: os.environ/AWS_SECRET_ACCESS_KEY
aws_region_name: us-east-1
router_settings:
model_group_alias: {"gemini-2.5-pro": "bedrock-claude"}
All deployments with model_name=anthropic-claude
will be load balanced. In this example we load balance between Anthropic and Bedrock.
model_list:
- model_name: anthropic-claude
litellm_params:
model: anthropic/claude-3-5-sonnet-20241022
api_key: os.environ/ANTHROPIC_API_KEY
- model_name: anthropic-claude
litellm_params:
model: bedrock/anthropic.claude-3-5-sonnet-20241022-v2:0
aws_access_key_id: os.environ/AWS_ACCESS_KEY_ID
aws_secret_access_key: os.environ/AWS_SECRET_ACCESS_KEY
aws_region_name: us-east-1
router_settings:
model_group_alias: {"gemini-2.5-pro": "anthropic-claude"}
With this configuration, when you use gemini-2.5-pro
in the CLI, LiteLLM will automatically route your requests to the configured provider(s) with load balancing and fallbacks.
Troubleshootingโ
If you encounter issues:
- Connection errors: Verify that your LiteLLM Proxy is running and accessible at the configured
GOOGLE_GEMINI_BASE_URL
- Authentication errors: Ensure your
GEMINI_API_KEY
is valid and has the necessary permissions - Build failures: Make sure all dependencies are installed with
npm install