Skip to main content

Model Management

Add new models + Get model info without restarting proxy.

In Config.yaml​

model_list:
- model_name: text-davinci-003
litellm_params:
model: "text-completion-openai/text-davinci-003"
model_info:
metadata: "here's additional metadata on the model" # returned via GET /model/info

Get Model Information - /model/info​

Retrieve detailed information about each model listed in the /model/info endpoint, including descriptions from the config.yaml file, and additional model info (e.g. max tokens, cost per input token, etc.) pulled from the model_info you set and the litellm model cost map. Sensitive details like API keys are excluded for security purposes.

curl -X GET "http://0.0.0.0:4000/model/info" \
-H "accept: application/json" \

Add a New Model​

Add a new model to the proxy via the /model/new API, to add models without restarting the proxy.

curl -X POST "http://0.0.0.0:4000/model/new" \
-H "accept: application/json" \
-H "Content-Type: application/json" \
-d '{ "model_name": "azure-gpt-turbo", "litellm_params": {"model": "azure/gpt-3.5-turbo", "api_key": "os.environ/AZURE_API_KEY", "api_base": "my-azure-api-base"} }'

Model Parameters Structure​

When adding a new model, your JSON payload should conform to the following structure:

  • model_name: The name of the new model (required).
  • litellm_params: A dictionary containing parameters specific to the Litellm setup (required).
  • model_info: An optional dictionary to provide additional information about the model.

Here's an example of how to structure your ModelParams:

{
"model_name": "my_awesome_model",
"litellm_params": {
"some_parameter": "some_value",
"another_parameter": "another_value"
},
"model_info": {
"author": "Your Name",
"version": "1.0",
"description": "A brief description of the model."
}
}

Keep in mind that as both endpoints are in [BETA], you may need to visit the associated GitHub issues linked in the API descriptions to check for updates or provide feedback:

Feedback on the beta endpoints is valuable and helps improve the API for all users.

Add Additional Model Information​

If you want the ability to add a display name, description, and labels for models, just use model_info:

model_list:
- model_name: "gpt-4"
litellm_params:
model: "gpt-4"
api_key: "os.environ/OPENAI_API_KEY"
model_info: # 👈 KEY CHANGE
my_custom_key: "my_custom_value"

Usage​

  1. Add additional information to model
model_list:
- model_name: "gpt-4"
litellm_params:
model: "gpt-4"
api_key: "os.environ/OPENAI_API_KEY"
model_info: # 👈 KEY CHANGE
my_custom_key: "my_custom_value"
  1. Call with /model/info

Use a key with access to the model gpt-4.

curl -L -X GET 'http://0.0.0.0:4000/v1/model/info' \
-H 'Authorization: Bearer LITELLM_KEY' \
  1. Expected Response

Returned model_info = Your custom model_info + (if exists) LITELLM MODEL INFO

How LiteLLM Model Info is found

Tell us how this can be improved!

{
"data": [
{
"model_name": "gpt-4",
"litellm_params": {
"model": "gpt-4"
},
"model_info": {
"id": "e889baacd17f591cce4c63639275ba5e8dc60765d6c553e6ee5a504b19e50ddc",
"db_model": false,
"my_custom_key": "my_custom_value", # 👈 CUSTOM INFO
"key": "gpt-4", # 👈 KEY in LiteLLM MODEL INFO/COST MAP - https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json
"max_tokens": 4096,
"max_input_tokens": 8192,
"max_output_tokens": 4096,
"input_cost_per_token": 3e-05,
"input_cost_per_character": null,
"input_cost_per_token_above_128k_tokens": null,
"output_cost_per_token": 6e-05,
"output_cost_per_character": null,
"output_cost_per_token_above_128k_tokens": null,
"output_cost_per_character_above_128k_tokens": null,
"output_vector_size": null,
"litellm_provider": "openai",
"mode": "chat"
}
},
]
}