Skip to main content

Generic API Callback (Webhook)

Send LiteLLM logs to any HTTP endpoint.

Quick Start

model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: openai/gpt-3.5-turbo
api_key: os.environ/OPENAI_API_KEY

litellm_settings:
callbacks: ["custom_api_name"]

callback_settings:
custom_api_name:
callback_type: generic_api
endpoint: https://your-endpoint.com/logs
headers:
Authorization: Bearer sk-1234

Configuration

Basic Setup

callback_settings:
<callback_name>:
callback_type: generic_api
endpoint: https://your-endpoint.com # required
headers: # optional
Authorization: Bearer <token>
Custom-Header: value
event_types: # optional, defaults to all events
- llm_api_success
- llm_api_failure

Parameters

ParameterTypeRequiredDescription
callback_typestringYesMust be generic_api
endpointstringYesHTTP endpoint to send logs to
headersdictNoCustom headers for the request
event_typeslistNoFilter events: llm_api_success, llm_api_failure. Defaults to all events.
log_formatstringNoOutput format: json_array (default), ndjson, or single. Controls how logs are batched and sent.

Pre-configured Callbacks

Use built-in configurations from generic_api_compatible_callbacks.json:

litellm_settings:
callbacks: ["rubrik"] # loads pre-configured settings

callback_settings:
rubrik:
callback_type: generic_api
endpoint: https://your-endpoint.com # override defaults
headers:
Authorization: Bearer ${RUBRIK_API_KEY}

Payload Format

Logs are sent as StandardLoggingPayload objects in JSON format:

[
{
"id": "chatcmpl-123",
"call_type": "litellm.completion",
"model": "gpt-3.5-turbo",
"messages": [...],
"response": {...},
"usage": {...},
"cost": 0.0001,
"startTime": "2024-01-01T00:00:00",
"endTime": "2024-01-01T00:00:01",
"metadata": {...}
}
]

Environment Variables

Set via environment variables instead of config:

export GENERIC_LOGGER_ENDPOINT=https://your-endpoint.com
export GENERIC_LOGGER_HEADERS="Authorization=Bearer token,Custom-Header=value"

Batch Settings

Control batching behavior (inherits from CustomBatchLogger):

callback_settings:
my_api:
callback_type: generic_api
endpoint: https://your-endpoint.com
batch_size: 100 # default: 100
flush_interval: 60 # seconds, default: 60

Log Format Options

Control how logs are formatted and sent to your endpoint.

JSON Array (Default)

callback_settings:
my_api:
callback_type: generic_api
endpoint: https://your-endpoint.com
log_format: json_array # default if not specified

Sends all logs in a batch as a single JSON array [{log1}, {log2}, ...]. This is the default behavior and maintains backward compatibility.

When to use: Most HTTP endpoints expecting batched JSON data.

NDJSON (Newline-Delimited JSON)

callback_settings:
my_api:
callback_type: generic_api
endpoint: https://your-endpoint.com
log_format: ndjson

Sends logs as newline-delimited JSON (one record per line):

{log1}
{log2}
{log3}

When to use: Log aggregation services like Sumo Logic, Splunk, or Datadog that support field extraction on individual records.

Benefits:

  • Each log is ingested as a separate message
  • Field Extraction Rules work at ingest time
  • Better parsing and querying performance

Single

callback_settings:
my_api:
callback_type: generic_api
endpoint: https://your-endpoint.com
log_format: single

Sends each log as an individual HTTP request in parallel when the batch is flushed.

When to use: Endpoints that expect individual records, or when you need maximum compatibility.

Note: This mode sends N HTTP requests per batch (more overhead). Consider using ndjson instead if your endpoint supports it.